Reflection and refraction of a plane wave at oblique incidence

Let us consider a plane wave that obliquely incidents at the boundary of two media that
are characterized by their permittivity and permeability (see Figure 1). The plane
containing both the normal to the surface and the direction of propagation of the incident

wave is known as the plane of incidence.
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We consider two different cases:
Case A: The electric field of the incident wave is perpendicular to the plane of
incidence.
Case B: The electric field of the incident wave is in the plane of incidence.
Any other incident wave can be decomposed into linear combination of these two.
Fig. 1 shows a wave of either polarization incident on the boundary of two media. In this

Figure, the angle 6, between the normal to the boundary and the propagation direction is



the angle of incidence. We choose the plane of incidence to be the x —z plane with the
axes directions shown in the Figurel, the y-axes is out of the page.

There may also be reflected and refracted (transmitted) waves, as shown in Fig. 1.
Directions of propagation of these waves have angles 6, and 6, with the normal to the
boundary. The unit wave vectors of the incident, reflected and transmitted waves can be

written as the following:

l@l- =[sin 6,,0,cos b, ] (1)
l@r =[sin G,,0,—cosb, ] (2)
l@t =[sin 6,,0,cos b, ] (3)

The phasors of the traveling incident, reflected, and refracted plane waves can be written

in the following form
Ei()=Eep(-ik -F), E()=Eep(-ik F), and E(F)=Eexp(-ik )
correspondingly. If the wave fields depend on coordinate as exp(—il; -7), then Maxwell

equations for phasors

VxE =—iouH 4)
VxH =iwsE

can be written in the form:

—i(k x E) =—icouH @)
—i(k x H)=iweE (5%)

Now we can write the wave fields for the cases A and B,

Incident wave, Ei , Hi ~ exp{-ik;(xsin 6 + zcos 6;)}

Case A (E perpendicular to plane of incidence)

—

E; = jEo op{-ikiF}

) ) . ) 6
H; = Ey |2 (i cos @, + Ksin 6) exp{-ik;F} (©)
H



Case B (£ in plane of incidence)

E; = Eo(f cos 6 —ksin 6,) exp{—ikiF}
H; = iEoF exp{-ik;r}
H

Reflected wave, E., H, ~exp{-ik;(xsin6, —zcosd,)}

Case A (E perpendicular to plane of incidence)

E, = JE;, exp{-ik, }

H, =E |2 cosd, +Ksind,)exp{-ik,}
H

Case B (£ in plane of incidence)

E, = E,(i cos 6, +Ksin 6,) exp{—ik,F}
Hy Z—jE1F exp{-ik T}
H

Refracted (transmitted) wave, Et, I:It ~ exp{-ik,(xsin g, + zcos &)}

Case A (E perpendicular to plane of incidence)
E, = JE o {-ikyT}
H, = E, |22 (~i cos 6, + Ksin 6,) exp{-iK, 7}
H

Case B (£in plane of incidence)

E, = E, (i cos 6, —k sin 6,) exp{—ikF}

- 2 & g
Hi = JEOW/_ZeXp{_lktr}
H2
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We introduced unit vectors 1, j,l2 along X, Y,z axes in Egs. (6)-(12).

Case B: Let us consider a plane wave with electric field E in the plane of incidence

incident on the discontinuity between two dielectrics (&, ),( &2, 15)

The boundary conditions at z =0 are continuity of tangential components of electric and

magnetic fields Eq,, and Hyyp:

Eq cos 6; exp (—ik;xsin &) + E; cos 6, exp(—ik;xsin 6, ) = E, cos &, exp (—ik,xsin 6;)

13
2LE, exp(—ikyxsin) — | LE, exp(ikpxsing,) = |22E, ep(cik,xsing) )
H H Hy

Egs. (13) must hold for all values of x, which is possible only if

ki sin 8, =k, sin g, =k, siné, (14)
We see that

6 = 6, (angle of refraction equals angle of incidence) (15)
and
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(16)

Heren is index of refraction.
Eq. (16) is the familiar Snell’s law.

Canceling the exponential terms in (13), (14) by means of (15), we obtain

Ey cos 6, + E; cos 6, = E, cos 6,

& & £ (17)
1/—1Eo—1/—1|51:1/—2|52
H M H



We can now solve Eqgs. (17) for E; and E, with the result

Ey _ V& 1 086 — &5/ 1 COS G,

Bo  \ér/m cos + e/ 1y COS 6, (18)
Ep _ 2\/&1/ 1y COS 6,

By Jei/tn €06, + e/ iy c0S 6,




